Czasami potrzebujemy znaleźć wartość wybranej funkcji trygonometrycznej dla mniej typowych kątów np. sinus 51 stopni. Wówczas wartość funkcji można obliczyć rozwijając daną funkcję w tzw. szereg Taylora (lub ogólniej: szereg potęgowy). sin ⁡ x = x − x 3 3! + x 5 5! − x 7 7! + ⋯ = ∑ n = 0 ∞ ( − 1) n x 2 n + 1 ( 2 n 2. The cosine of pi. cos π = cos 180 = -1 Thus, the cosine of pi is the same as the cosine of 180 degrees and it is equal to minus one. 3. The tangent of pi tg π = tg 180 = 0 Thus, the tangent pi is the same as the tangent of 180 degrees and it is zero. Table of values of the sine, cosine, tangent for angles 0 - 360 degrees (often occurring Wzory redukcyjne można wywieść z symetrii wykresów odpowiednich funkcji trygonometrycznych. Mianowicie, wykres funkcji sinus jest środkowo symetryczny względem dowolnego punktu osi OX o współrzędnej postaci k π i osiowo symetryczny względem dowolnej prostej o równaniu x = π/2 + k π. sin = sinus. cos = cosinus. tg = tangenta. ctg = cotangenta . α = alfa. β = beta (se mai folosește atunci când avem mai multe unghiuri de notat) Formule: Cazuri particulare: Tabelul de valori al funcțiilor trigonometrice reprezintă un tabel în care avem valorile funcțiilor trigonometrice pentru unghiuri de 30°, 45° și 60°. Rozwiązanie zadania z matematyki: Ile wynosi tg α jeśli frac{cos α-sin α}{sin α}=2?{A) frac{1}{3}}{B) 3}{C) frac{1}{2}}{D) 2}, Dana równość, 1470550 Tablice 1: Sinus. Znajdź kąt trójkąta (stopnie), jeżeli znana jest wartość sinusa tego kąta. Interaktywne tablice trygonometryczne online. Tablice sin, cos, tg, ctg dla kątów 0-360 z dokładnością z zakresu 0-9 miejsca po przecinku. GCT9eq. W tabli poniżej przedstawiono wartości funkcji trygonometrycznych wybranych kątów przedstawionych w radianach i stopniach. \(\alpha\) \(\text{sin} \: \alpha\) \(\text{cos} \: \alpha\) \(\text{tg} \: \alpha\) \(\text{ctg} \: \alpha\) \(\text{radiany}\) \(\text{stopnie}\) \(0\) \(0\) \(0\) \(1\) \(0\) \(-\) \(\dfrac{\pi}{12}\) \(15\) \(\dfrac{\sqrt{6} - \sqrt{2}}{4}\) \(\dfrac{\sqrt{6} + \sqrt{2}}{4}\) \(2 - \sqrt{3}\) \(2 + \sqrt{3}\) \(\dfrac{\pi}{10}\) \(18\) \(\dfrac{\sqrt{5} - 1}{4}\) \(\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}\) \(\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}\) \(\sqrt{5 + 2 \sqrt{5}}\) \(\dfrac{\pi}{8}\) \(22 \dfrac{1}{2}\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\) \(\sqrt{2} -1\) \(\sqrt{2} + 1\) \(\dfrac{\pi}{6}\) \(30\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{3}}{3}\) \(\sqrt{3}\) \(\dfrac{\pi}{4}\) \(45\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(1\) \(1\) \(\dfrac{\pi}{3}\) \(60\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(\sqrt{3}\) \(\dfrac{\sqrt{3}}{3}\) \(\dfrac{5}{12} \pi\) \(75\) \(\dfrac{\sqrt{6} + \sqrt{2}}{4}\) \(\dfrac{\sqrt{6} - \sqrt{2}}{4}\) \(2 + \sqrt{3}\) \(2 - \sqrt{3}\) \(\dfrac{\pi}{2}\) \(90\) \(1\) \(0\) \(-\) \(0\) \(\pi\) \(180\) \(0\) \(-1\) \(0\) \(-\) \(\dfrac{3}{2} \pi\) \(270\) \(-1\) \(0\) \(-\) \(0\) \(2 \pi\) \(360\) \(0\) \(1\) \(0\) \(-\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\) Definicje: Sinus (sin) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej naprzeciw tego kąta do długości przeciwprostokątnej. Cosinus (cos) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej przy tym kącie do długości przeciwprostokątnej. Tangens (tg) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej naprzeciw tego kąta do długości przyprostokątnej przy kącie. Cotangens (ctg) kąta w trójkącie prostokątnym jest równy długości przyprostokątnej przy tym kącie do długości przyprostokątnej naprzeciw tego kąta. Sinus (sin), cosinus (cos), tangens (tg), cotangens (ctg) kątów o mierze 0, 30, 45, 60, 90 stopni. Tablice z wartościami funkcji trygonometrycznych dla kątów ostrych znajdują się pod tym linkiem. Jedynka trygonometryczne \[\sin^2{\alpha }+\cos^2{\alpha }=1\] Wzory na tangens i cotangens \[\begin{split}&\text{tg}{\alpha }=\frac{\sin{\alpha }}{\cos{\alpha}}\\\\\\\\&\text{ctg}{\alpha}=\frac{\cos{\alpha}}{\sin{\alpha}}\\\\\\\\&\text{tg}{\alpha}\cdot \text{ctg}{\alpha=1}\\\\\end{split}\] Funkcje trygonometryczne podwojonego kąta \[\begin{split}&\\&\sin{2\alpha }=2\sin{\alpha }\cos{\alpha }=\frac{2\ \text{tg}{\alpha }}{1 +\text{tg}^2{\alpha }}\\\\\\\\&\cos{2\alpha }=\cos{^2\alpha }-\sin{^2\alpha}=2\cos^2\alpha-1\\\\\\\\&\text{tg}{2\alpha }=\frac{2\ \text{tg}{\alpha }}{1-\text{tg}^2{\alpha }}=\frac{2}{\text{ctg}{\alpha }-\text{tg}{\alpha }}\\\\\\\\&\text{ctg}{2\alpha }=\frac{\text{ctg}^2{\alpha }-1}{2\ \text{ctg}{\alpha }}=\frac{\text{ctg}{\alpha }-\text{tg}{\alpha }}{2}\\\\\end{split}\] Funkcje trygonometryczne potrojonego kąta \[\begin{split}&\\&\sin{3\alpha }=-4\sin^3{\alpha }+3\sin{\alpha }\\\\\\\\&\cos{3\alpha }=4 \cos^3{\alpha }-3\cos{\alpha }\\\\\\\\&\text{tg}{3\alpha }=\frac{3\ \text{tg}{\alpha }-\text{tg}^3{\alpha }}{1-3\ \text{tg}^2{\alpha }}\\\\\\\\&\text{ctg}{3\alpha }=\frac{\text{ctg}^3{\alpha }-3\ \text{ctg}{\alpha }}{3\ \text{ctg}^2{\alpha }-1}\\\\\end{split}\] Funkcje trygonometryczne sumy i różnicy kątów \[\begin{split}&\\&\sin{\left ( \alpha +\beta \right )}=\sin{\alpha }\cos{\beta }+\sin{\beta }\cos{\alpha }\\\\\\\\&\sin{\left ( \alpha -\beta \right )}=\sin{\alpha }\cos{\beta }-\sin{\beta }\cos{\alpha }\\\\\\\\&\cos{\left ( \alpha +\beta \right )}=\cos{\alpha }\cos{\beta }-\sin{\alpha }\sin{\beta }\\\\\\\\&\cos{\left ( \alpha -\beta \right )}=\cos{\alpha }\cos{\beta }+\sin{\alpha }\sin{\beta }\\\\\\\\&\text{tg}{\left ( \alpha +\beta \right )}=\frac{\text{tg}{\alpha }+\text{tg}{\beta }}{1-\text{tg}{\alpha }\ \text{tg}{\beta }}\\\\\\\\&\text{tg}{\left ( \alpha -\beta \right )}=\frac{\text{tg}{\alpha }-\text{tg}{\beta }}{1+\text{tg}{\alpha }\ \text{tg}{\beta }}\\\\\\\\&\text{ctg}{\left ( \alpha +\beta \right )}=\frac{\text{ctg}{\alpha }\ \text{ctg}{\beta }-1}{\text{ctg}{\beta }+\text{ctg}{\alpha }}\\\\\\\\&\text{ctg}{\left ( \alpha -\beta \right )}=\frac{\text{ctg}{\alpha }\ \text{ctg}{\beta }+1}{\text{ctg}{\beta }-\text{ctg}{\alpha }}\\\\\end{split}\] Wzory redukcyjne \[\begin{split}&\sin{\left ( 90^\circ +\alpha \right )}=\cos{\alpha }\\\\&\cos{\left ( 90^\circ +\alpha \right )}=-\sin{\alpha }\\\\&\text{tg}{\left ( 90^\circ +\alpha \right )}=-\text{ctg}{\alpha }\\\\&\text{ctg}{\left ( 90^\circ +\alpha \right )}=-\text{tg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 90^\circ -\alpha \right )}=\cos{\alpha }\\\\&\cos{\left ( 90^\circ -\alpha \right )}=\sin{\alpha }\\\\&\text{tg}{\left ( 90^\circ -\alpha \right )}=\text{ctg}{\alpha }\\\\&\text{ctg}{\left ( 90^\circ -\alpha \right )}=\text{tg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 180^\circ +\alpha \right )}=-\sin{\alpha }\\\\&\cos{\left ( 180^\circ +\alpha \right )}=-\cos{\alpha }\\\\&\text{tg}{\left ( 180^\circ +\alpha \right )}=\text{tg}{\alpha }\\\\&\text{ctg}{\left ( 180^\circ +\alpha \right )}=\text{ctg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 180^\circ -\alpha \right )}=\sin{\alpha }\\\\&\cos{\left ( 180^\circ -\alpha \right )}=-\cos{\alpha }\\\\&\text{tg}{\left ( 180^\circ -\alpha \right )}=-\text{tg}{\alpha }\\\\&\text{ctg}{\left ( 180^\circ -\alpha \right )}=-\text{ctg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 270^\circ +\alpha \right )}=-\cos{\alpha }\\\\&\cos{\left ( 270^\circ +\alpha \right )}=\sin{\alpha }\\\\&\text{tg}{\left ( 270^\circ +\alpha \right )}=-\text{ctg}{\alpha }\\\\&\text{ctg}{\left ( 270^\circ +\alpha \right )}=-\text{tg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 270^\circ -\alpha \right )}=-\cos{\alpha }\\\\&\cos{\left ( 270^\circ -\alpha \right )}=-\sin{\alpha }\\\\&\text{tg}{\left ( 270^\circ -\alpha \right )}=\text{ctg}{\alpha }\\\\&\text{ctg}{\left ( 270^\circ -\alpha \right )}=\text{tg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 360^\circ +\alpha \right )}=\sin{\alpha }\\\\&\cos{\left ( 360^\circ +\alpha \right )}=\cos{\alpha }\\\\&\text{tg}{\left ( 360^\circ +\alpha \right )}=\text{tg}{\alpha }\\\\&\text{ctg}{\left ( 360^\circ +\alpha \right )}=\text{ctg}{\alpha }\end{split}\] \[\begin{split}&\sin{\left ( 360^\circ -\alpha \right )}=-\sin{\alpha }\\\\&\cos{\left ( 360^\circ -\alpha \right )}=\cos{\alpha }\\\\&\text{tg}{\left ( 360^\circ -\alpha \right )}=-\text{tg}{\alpha }\\\\&\text{ctg}{\left ( 360^\circ -\alpha \right )}=-\text{ctg}{\alpha }\end{split}\] Sumy i różnice funkcji trygonometrycznych \[\begin{split}&\\&\sin{\alpha }+\sin{\beta }=2\sin{\frac{\alpha +\beta }{2}}\cos{\frac{\alpha -\beta }{2}}\\\\\\\\&\sin{\alpha }-\sin{\beta }=2\cos{\frac{\alpha +\beta }{2}}\sin{\frac{\alpha -\beta }{2}}\\\\\\\\&\cos{\alpha }+\cos{\beta }=2\cos{\frac{\alpha +\beta }{2}}\cos{\frac{\alpha -\beta }{2}}\\\\\\\\&\cos{\alpha }-\cos{\beta }=-2\sin{\frac{\alpha +\beta }{2}}\sin{\frac{\alpha -\beta }{2}}\\\\\\\\&\text{tg}{\alpha }+\text{tg}{\beta }=\frac{\sin{\left ( \alpha +\beta \right )}}{\cos{\alpha }\cos{\beta }}\\\\\\\\&\text{tg}{\alpha }-\text{tg}{\beta }=\frac{\sin{\left ( \alpha -\beta \right )}}{\cos{\alpha }\cos{\beta }}\\\\\\\\&\text{ctg}{\alpha }+\text{ctg}{\beta }=\frac{\sin{\left ( \beta +\alpha \right )}}{\sin{\alpha }\sin{\beta }}\\\\\\\\&\text{ctg}{\alpha }-\text{ctg}{\beta }=\frac{\sin{\left ( \beta -\alpha \right )}}{\sin{\alpha }\sin{\beta }}\\\\\\\\&\cos{\alpha }+\sin{\alpha }=\sqrt{2}\sin{\left ( 45^\circ +\alpha \right )}=\sqrt{2}\cos{\left ( 45^\circ -\alpha \right )}\\\\\\\\&\cos{\alpha }-\sin{\alpha }=\sqrt{2}\cos{\left ( 45^\circ +\alpha \right )}=\sqrt{2}\sin{\left ( 45^\circ -\alpha \right )}\\\\\end{split}\] Sumy i różnice jedności z funkcjami trygonometrycznymi \[\begin{split}&\\&1+\sin{\alpha }=2\sin^2{\left ( 45^\circ +\frac{\alpha }{2} \right )}=2\cos^2{\left ( 45^\circ -\frac{\alpha }{2} \right )}\\\\\\\\&1-\sin{\alpha }=2\sin^2{\left ( 45^\circ -\frac{\alpha }{2} \right )}=2\cos^2{\left ( 45^\circ +\frac{\alpha }{2} \right )}\\\\\\\\&1+\cos{\alpha }=2\cos^2{\frac{\alpha }{2}}\\\\\\\\&1-\cos{\alpha }=2\sin^2{\frac{\alpha }{2}}\\\\\\\\&1+\text{tg}^2{\alpha }=\frac{1}{\cos^2{\alpha }}\\\\\\\\&1+\text{ctg}^2{\alpha }=\frac{1}{\sin^2{\alpha }}\\\\\\\\\end{split}\] Różnice kwadratów funkcji trygonometrycznych \[\begin{split}&\\&\sin^2{\alpha }-\sin^2{\beta }=\cos^2{\beta }-\cos^2{\alpha }=\sin{\left ( \alpha +\beta \right )}\sin{\left ( \alpha -\beta \right )}\\\\\\\\&\cos^2{\alpha }-\sin^2{\beta }=\cos^2{\beta }-\sin^2{\alpha }=\cos{\left ( \alpha +\beta \right )}\cos{\left ( \alpha -\beta \right )}\\\\\end{split}\] Iloczyny funkcji trygonometrycznych \[\begin{split}&\\&\sin{\alpha }\sin{\beta }=\frac{1}{2}\left [ \cos{\left ( \alpha -\beta \right )-\cos{\left ( \alpha +\beta \right )}} \right ]\\\\\\&\cos{\alpha }\cos{\beta }=\frac{1}{2}\left [ \cos{\left ( \alpha -\beta \right )+\cos{\left ( \alpha +\beta \right )}} \right ]\\\\\\&\sin{\alpha }\cos{\beta }=\frac{1}{2}\left [ \sin{\left ( \alpha -\beta \right )+\sin{\left ( \alpha +\beta \right )}} \right ]\\\\\\\end{split}\] Uzmimo x-osu i y-osu koordinatnog sistema i O za koordinatni početak. Kružnicu sa centrom u O poluprečnika = 1 zovemo trigonometrijska kružnica ili jedinična kružnica. Ako je P tačka kružnice i t ugao između PO i x onda: x-koordinatu tačke P zovemo kosinus ugla t. Pišemo: cos(t); y-koordinatu tačke P zovemo sinus ugla t. Pišemo: sin(t); broj sin(t)/cos(t) zovemo tangens ugla t. Pišemo: tg(t); broj cos(t)/sin(t) zovemo kotangens ugla t. Pišemo: ctg(t). Sinusna funkcija sin : R -> R Sve trigonometrijske funkcije su periodične. Period sinusne funkcije je 2π. Kodomen: [-1,1]. Kosinusna funkcija cos : R -> R Period kosinusne funkcije je 2π. Kodomen: [-1,1]. Tangensna funkcija tg : R -> R Kodomen: R. Period je π a funkcija nije definisana za x = (π/2) + kπ, k=0,1,2,... Kotangensna funkcija ctg : R -> R Kodomen: R. Period je π a funkcija nije definisana za x = kπ, k=0,1,2,... Vrednosti sin, cos, tg, ctg za uglove 0°, 30°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360° $\alpha^o$ $0^o$ $30^o$ $45^o$ $60^o$ $90^o$ $120^o$ $135^o$ $150^o$ $180^o$ $210^o$ $225^o$ $240^o$ $270^o$ $300^o$ $315^o$ $330^o$ $360^o$ $\alpha rad$ $0$ $\frac{\pi}{6}$ $\frac{\pi}{4}$ $\frac{\pi}{3}$ $\frac{\pi}{2}$ $\frac{2\pi}{3}$ $\frac{3\pi}{4}$ $\frac{5\pi}{6}$ $\pi$ $\frac{7\pi}{6}$ $\frac{5\pi}{4}$ $\frac{4\pi}{3}$ $\frac{3\pi}{2}$ $\frac{5\pi}{3}$ $\frac{7\pi}{4}$ $\frac{11\pi}{6}$ $2\pi$ $sin\alpha$ $0$ $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$ $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ $-1$ $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{1}{2}$ $0$ $cos\alpha$ $1$ $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ $0$ $-\frac{1}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$ $-1$ $-\frac{\sqrt{3}}{2}$ $-\frac{\sqrt{2}}{2}$ $-\frac{1}{2}$ $0$ $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ $1$ $tg\alpha$ $0$ $\frac{\sqrt{3}}{3}$ $1$ $\sqrt{3}$ $-$ $-\sqrt{3}$ $-1$ $-\frac{\sqrt{3}}{3}$ $0$ $\frac{\sqrt{3}}{3}$ $1$ $\sqrt{3}$ $-$ $-\sqrt{3}$ $-1$ $-\frac{\sqrt{3}}{3}$ $0$ $ctg\alpha$ $-$ $\sqrt{3}$ $1$ $\frac{\sqrt{3}}{3}$ $0$ $-\frac{\sqrt{3}}{3}$ $-1$ $-\sqrt{3}$ $-$ $\sqrt{3}$ $1$ $\frac{\sqrt{3}}{3}$ $0$ $-\frac{\sqrt{3}}{3}$ $-1$ $-\sqrt{3}$ $-$ Najlakši način za pamćenje vrednosti funkcija sin i cos za uglove 0°, 30°, 60°, 90°: sin([0, 30, 45, 60, 90]) = cos([90, 60, 45, 30, 0]) = sqrt([0, 1, 2, 3, 4]/4) Trigonometrijski identiteti Uglu od t radiana odgovara tačno jedna tačka P(cos(t),sin(t)) na jediničnoj kružnici. Udaljenost [OP] = 1. Izračunavanje rastojanja tačke P za svako t: cos2(t) + sin2(t) = 1 Ako je t + t' = 180° onda je: sin(t) = sin(t') cos(t) = -cos(t') tg(t) = -tg(t') ctg(t) = -ctg(t') Ako je t + t' = 90° onda je: sin(t) = cos(t') cos(t) = sin(t') tg(t) = ctg(t') ctg(t) = tg(t') $-\alpha$ $90^\circ - \alpha$ $90^\circ + \alpha$ $180^\circ - \alpha$ $\textrm{ sin }$ $-\textrm{ sin }\alpha$ $\textrm{ cos }\alpha$ $\textrm{ cos } \alpha$ $\textrm{ sin }\alpha$ $\textrm{ cos }$ $\textrm{ cos }\alpha$ $\textrm{ sin }\alpha$ $-\textrm{ sin} \alpha$ $-\textrm{ cos }\alpha$ $\textrm{ tg }$ $-\textrm{ tg }\alpha$ $\textrm{ ctg }\alpha$ $-\textrm{ ctg } \alpha$ $-\textrm{ tg }\alpha$ $\textrm{ ctg }$ $-\textrm{ ctg }\alpha$ $\textrm{ tg }\alpha$ $-\textrm{ tg } \alpha$ $-\textrm{ ctg }\alpha$ Trigonometrijske formule Formule polovičnog ugle $\sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili || - ako $\frac{\alpha}{2}$ leži u kvadrantu ||| ili |V $\cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili |V - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili ||| $tg\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili ||| - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili |V $\textrm{ ctg }\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}$ + ako $\frac{\alpha}{2}$ leži u kvadrantu | ili ||| - ako $\frac{\alpha}{2}$ leži u kvadrantu || ili |V $\textrm{ tg }\frac{\alpha}{2} = \frac{\sin\alpha}{1+\cos\alpha} = \frac{1-\cos\alpha}{\sin\alpha}=\csc\alpha-\textrm{ ctg }\alpha$ $\textrm{ ctg }\frac{\alpha}{2} = \frac{\sin\alpha}{1-\cos\alpha} = \frac{1+\cos\alpha}{\sin\alpha}=\csc\alpha+\textrm{ ctg }\alpha$ Formule dvostrukog/trostrukog ugla $\sin(2u) = 2\sin(u)\cdot \cos(u)$ $\cos(2u) = \cos^2(u) - \sin^2(u) = 2\cos^2(u) - 1 = 1 - 2\sin^2(u)$ $\textrm{ tg }(2u) = \frac{2\textrm{ tg }(u)}{1- \textrm{ tg }^2(u)}$ $\cos(2u) = \frac{1 - \textrm{ tg }^2(u)}{1 + \textrm{ tg }^2(u)}$ $\sin(2u) = \frac{2\textrm{ tg }(u)}{1 + \textrm{ tg }^2(u)}$ $\sin3\alpha = 3\sin\alpha - 4 \sin^3\alpha$ $\cos3\alpha = 4\cos^3\alpha - 3 \cos\alpha$ $\textrm{ tg }3\alpha=\frac{3\textrm{ tg }\alpha - \textrm{ tg }^3\alpha}{1-3\textrm{ tg }^2\alpha}$ $\textrm{ ctg }3\alpha=\frac{\textrm{ ctg }^3\alpha-3\textrm{ ctg }\alpha}{3\textrm{ ctg }^2\alpha-1}$ $\sin4\alpha = 4\cos^3\alpha\sin\alpha - 4\cos\alpha \sin^3\alpha$ $\cos4\alpha = \cos^4\alpha - 6\cos^2\alpha\sin^2\alpha + \sin^4\alpha$ $\textrm{ tg }4\alpha=\frac{4\textrm{ tg }\alpha - 4\textrm{ tg }^3\alpha}{1-6\textrm{ tg }^2\alpha+\textrm{ tg }^4\alpha}$ $\textrm{ ctg }4\alpha=\frac{\textrm{ ctg }^4\alpha-6\textrm{ ctg }^2\alpha+1}{4\textrm{ ctg }^3\alpha-4\textrm{ ctg }\alpha}$ Stepenovanje funkcija $\sin^2(\alpha)=\frac{1 - \cos(2\alpha)}{2}$ $\sin^3(\alpha)=\frac{3\sin\alpha - \sin(3\alpha)}{4}$ $\sin^4(\alpha)=\frac{\cos(4\alpha) - 4\cos(2\alpha) + 3}{8}$ $\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2}$ $\cos^3(\alpha)=\frac{3\cos\alpha + \cos(3\alpha)}{4}$ $\cos^4(\alpha)=\frac{4\cos(2\alpha) + \cos(4\alpha) + 3}{8}$ Funkcije zbira i razlike $\sin(\alpha + \beta) = \sin(\alpha)\cdot \cos(\beta) + \cos(\alpha)\cdot \sin(\beta)$ $\sin(\alpha - \beta) = \sin(\alpha)\cdot \cos(\beta) - \cos(\alpha)\cdot \sin(\beta)$ $\cos(\alpha + \beta) = \cos(\alpha)\cdot \cos(\beta) - \sin(\alpha)\cdot \sin(\beta)$ $\cos(\alpha - \beta) = \cos(\alpha)\cdot \cos(\beta) + \sin(\alpha)\cdot \sin(\beta)$ $\textrm{ tg }(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)}=\frac{\sin(\alpha)\cdot \cos(\beta) + \cos(\alpha)\cdot \sin(\beta)}{\cos(\alpha)\cdot \cos(\beta) - \sin(\alpha)\cdot \sin(\beta)}$ $\textrm{ tg }(\alpha + \beta) = \frac{\textrm{ tg }(\alpha) + \textrm{ tg }(\beta)}{1 - \textrm{ tg }(\alpha)\cdot\textrm{ tg }(\beta)}$ $\textrm{ ctg }(\alpha \pm \beta) = \frac{\textrm{ ctg }(\beta)\textrm{ ctg }(\alpha)\mp 1}{\textrm{ ctg }(\beta)\pm cot(\alpha)}=\frac{1\mp \textrm{ tg }(\alpha)\textrm{ tg }(\beta)}{\textrm{ tg }(\alpha)\pm \textrm{ tg }(\beta)}$ $\sin(\alpha + \beta + \gamma) = \sin\alpha \cos\beta \cos\gamma + \cos\alpha \sin\beta \cos\gamma + \cos\alpha \cos\beta \sin\gamma - \sin\alpha \sin\beta \sin\gamma$ $\cos(\alpha + \beta + \gamma) = \cos\alpha \cos\beta \cos\gamma - \sin\alpha \sin\beta \cos\gamma - \sin\alpha \cos\beta \sin\gamma $ $- \sin\alpha \cos\beta \sin\gamma - \cos\alpha \sin\beta \sin\gamma$ $\textrm{ tg }(\alpha + \beta + \gamma) = \frac{\textrm{ tg }\alpha + \textrm{ tg }\beta + \textrm{ tg }\gamma - \textrm{ tg }\alpha\cdot \textrm{ tg }\beta \cdot \textrm{ tg }\gamma}{1 - \textrm{ tg }\alpha\cdot\textrm{ tg }\beta - \textrm{ tg }\beta\cdot\textrm{ tg }\gamma - \textrm{ tg }\alpha\cdot\textrm{ tg }\gamma}$ Zbir i razlika funkcija $\textrm{ sin } \alpha + \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha - \beta}{2}$ $\textrm{ sin } \alpha - \textrm{ sin }\beta = 2 \textrm{ sin }\frac{\alpha - \beta}{2} \textrm{ cos }\frac{\alpha + \beta}{2}$ $\textrm{ cos } \alpha + \textrm{ cos }\beta = 2 \textrm{ cos }\frac{\alpha + \beta}{2} \textrm{ cos }\frac{\alpha - \beta}{2}$ $\textrm{ cos } \alpha - \textrm{ cos }\beta = -2 \textrm{ sin }\frac{\alpha + \beta}{2} \textrm{ sin }\frac{\alpha - \beta}{2}$ $\textrm{ tg }\alpha + \textrm{ tg }\beta = \frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos\beta}$ $\textrm{ tg }\alpha - \textrm{ tg }\beta = \frac{\sin(\alpha-\beta)}{\cos\alpha\cdot\cos\beta}$ $\textrm{ ctg }\alpha + \textrm{ ctg }\beta = \frac{\sin(\alpha+\beta)}{\sin\alpha\cdot\sin\beta}$ $\textrm{ ctg }\alpha - \textrm{ ctg }\beta = \frac{-\sin(\alpha-\beta)}{\sin\alpha\cdot\sin\beta}$ $\textrm{ sin }\alpha \textrm{ sin }\beta = \frac{1}{2} (\textrm{ cos }(\alpha - \beta) - \textrm{ cos }(\alpha + \beta))$ $\textrm{ cos }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ cos }(\alpha - \beta) + \textrm{ cos }(\alpha + \beta))$ $\textrm{ sin }\alpha \textrm{ cos }\beta = \frac{1}{2} (\textrm{ sin }(\alpha + \beta) + \textrm{ sin }(\alpha - \beta))$ $\textrm{ tg }\alpha\textrm{ tg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ tg }\beta}{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}=-\frac{\textrm{ tg }\alpha-\textrm{ tg }\beta}{\textrm{ ctg }\alpha-\textrm{ ctg }\beta}$ $\textrm{ ctg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ ctg }\alpha+\textrm{ ctg }\beta}{\textrm{ tg }\alpha+\textrm{ tg }\beta}$ $\textrm{ tg }\alpha\textrm{ ctg }\beta = \frac{\textrm{ tg }\alpha+\textrm{ ctg }\beta}{\textrm{ ctg }\alpha+\textrm{ tg }\beta}$ $\sin\alpha\sin\beta\sin\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)+\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)-\sin(\alpha+\beta+\gamma)\big)$ $\cos\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)+\cos(\alpha+\beta+\gamma)\big)$ $\sin\alpha\sin\beta\cos\gamma = \frac{1}{4}\big(-\cos(\alpha+\beta-\gamma)+\cos(\beta+\gamma-\alpha)+\cos(\gamma+\alpha-\beta)-\cos(\alpha+\beta+\gamma)\big)$ $\sin\alpha\cos\beta\cos\gamma = \frac{1}{4}\big(\sin(\alpha+\beta-\gamma)-\sin(\beta+\gamma-\alpha)+\sin(\gamma+\alpha-\beta)+\sin(\alpha+\beta+\gamma)\big)$ $\sin\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1+\textrm{tg}^2\frac{\alpha}{2}}$ $\cos\alpha = \frac{1-\textrm{tg}^2\frac{\alpha}{2}}{1+\textrm{tg}^2\frac{\alpha}{2}}$ $\textrm{tg}\alpha = \frac{2\textrm{tg}\frac{\alpha}{2}}{1-\textrm{tg}^2\frac{\alpha}{2}}$ $\textrm{ctg}\alpha = \frac{1-\textrm{tg}^2\frac{\alpha}{2}}{2\textrm{tg}\frac{\alpha}{2}}$ $1\pm\sin\alpha=2\sin^2\big(\frac{\pi}{4}\pm \frac{\alpha}{2}\big)=2\cos^2\big(\frac{\pi}{4}\mp \frac{\alpha}{2}\big)$ $\frac{1-\sin\alpha}{1+\sin\alpha} = \textrm{ tg }^2(\frac{\pi}{4}-\frac{\alpha}{2})$ $\frac{1-\cos\alpha}{1+\cos\alpha} = \textrm{ tg }^2\frac{\alpha}{2}$ $\frac{1-\textrm{ tg }\alpha}{1+\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}-\alpha)$ $\frac{1+\textrm{ tg }\alpha}{1-\textrm{ tg }\alpha} = \textrm{ tg }(\frac{\pi}{4}+\alpha)$ $\frac{\textrm{ ctg }\alpha + 1}{\textrm{ ctg }\alpha - 1} = \textrm{ ctg }(\frac{\pi}{4}-\alpha)$ $\textrm{ tg }\alpha + \textrm{ ctg }\alpha = \frac{2}{\sin2\alpha}$ $\textrm{ tg }\alpha - \textrm{ ctg }\alpha = -2\textrm{ ctg }2\alpha$ Jedynka trygonometryczna Dla dowolnego kąta \(\alpha \) zachodzi równanie: \[\sin^{2} \alpha +\cos^{2} \alpha =1\] Dowód jedynki trygonometrycznej dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt ostry \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \left ( \frac{a}{c} \right )^2+\left ( \frac{b}{c} \right )^2=\frac{a^2}{c^2}+\frac{b^2}{c^2}=\frac{a^2+b^2}{c^2}\] Z twierdzenia Pitagorasa wiemy, że: \[a^2+b^2=c^2\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \frac{a^2+b^2}{c^2} = \frac{c^2}{c^2}=1. \ _\blacksquare \] Wyjaśnienie sposobu zapisu Wyrażenie \(\sin^{2} \alpha\), to \(\sin \alpha \) podniesiony do drugiej potęgi. Czyli: \[\sin^{2} \alpha = (\sin \alpha)^2\] Zatem np. \(\sin \alpha = \frac{2}{3}\), to: \(\sin^{2} \alpha = \left ( \frac{2}{3} \right )^2=\frac{4}{9}\). Analogicznie interpretujemy \(\cos^{2} \alpha, \operatorname{tg}^2 \alpha \text{ i }\operatorname{ctg}^2\alpha \) oraz wyższe potęgi funkcji trygonometrycznych. Wzory na tangens i cotangens. Dla dowolnego kąta \(\alpha \) (dla którego funkcje trygonometryczne są określone) zachodzą wzory: \(\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =1\) \(\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\) \(\operatorname{ctg} \alpha =\frac{\cos \alpha }{\sin \alpha }\) Powyższe wzory są prawdziwe dla każdego kąta ostrego \(\alpha \) oraz dla wszystkich kątów, dla których funkcje są określone (tzn. nie pojawia się dzielenie przez \(0\) w mianowniku). Dowód wzorów dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\qquad \text{oraz}\qquad\operatorname{tg} \alpha =\frac{a}{b}\qquad \text{oraz}\qquad \operatorname{ctg} \alpha =\frac{b}{a}\] Zatem: \[\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =\frac{a}{b}\cdot \frac{b}{a}=1\] oraz: \[\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{a}{c}}{\frac{b}{c}}=\frac{a}{c}\cdot \frac{c}{b}=\frac{a}{b}=\operatorname{tg} \alpha \] a także: \[\frac{\cos \alpha }{\sin \alpha }=\frac{\frac{b}{c}}{\frac{a}{c}}=\frac{b}{c}\cdot \frac{c}{a}=\frac{b}{a}=\operatorname{ctg} \alpha. \ _\blacksquare\] Gdy znamy wartość przynajmniej jednej funkcji trygonometrycznej, to za pomocą powyższych wzorów możemy obliczyć wartości wszystkich pozostałych funkcji trygonometrycznych. Oblicz \(\sin \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\cos \alpha =\frac{1}{3}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\sin^{2} \alpha +\left ( \frac{1}{3} \right )^2 &= 1\\[10pt]\sin^{2} \alpha +\frac{1}{9} &= 1\\[10pt]\sin^{2} \alpha &= \frac{8}{9}\\[10pt]\sin \alpha &=\sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}}=\frac{2\sqrt{2}}{3}\cdot \frac{3}{1}=2\sqrt{2}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{2\cdot 2}=\frac{\sqrt{2}}{4}\] Oblicz \(\cos \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\sin \alpha =\frac{2}{5}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\left ( \frac{2}{5} \right )^2+\cos^{2} \alpha &= 1\\[10pt]\frac{4}{25}+\cos^{2} \alpha &= 1\\[10pt]\cos^{2} \alpha &= \frac{21}{25}\\[10pt]\cos \alpha &=\sqrt{\frac{21}{25}}=\frac{\sqrt{21}}{5} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}=\frac{2}{5}\cdot \frac{5}{\sqrt{21}}=\frac{2}{\sqrt{21}}=\frac{2\sqrt{21}}{21}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{\frac{2}{\sqrt{21}}}=\frac{\sqrt{21}}{2}\] Oblicz \(\sin \alpha \text{, }\cos \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\operatorname{tg} \alpha =7\). Najłatwiej jest wyliczyć cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{7}\] Teraz skorzystamy ze wzoru na tangens oraz jedynki trygonometrycznej i ułożymy układ równań z dwiema niewiadomymi. Tymi niewiadomymi będą oczywiście szukane \(\sin \alpha \text{ i }\cos \alpha \). \[\begin{split} &\begin{cases}\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \\[10pt]&\begin{cases}7 =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \end{split}\] Z pierwszego równania możemy wyliczyć np. \(\sin \alpha \): \[\begin{split} 7 &=\frac{\sin \alpha }{\cos \alpha }\\[6pt]7\cos \alpha &=\sin \alpha \\[6pt]\sin \alpha &=7\cos \alpha \end{split}\] Teraz wyznaczonego sinusa możemy podstawić do jedynki trygonometrycznej. W rezultacie otrzymamy równanie z jedną niewiadomą ( \(\cos \alpha \) ): \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &=1\\[6pt](7\cos \alpha )^2 +\cos^{2} \alpha &=1\\[6pt]49 \cos^{2} \alpha +\cos^{2} \alpha &=1\\[6pt]50 \cos^{2} \alpha &=1\\[6pt]\cos^{2} \alpha &=\frac{1}{50}\\[6pt]\cos \alpha &=\sqrt{\frac{1}{50}}=\frac{\sqrt{50}}{50}=\frac{5\sqrt{2}}{50}=\frac{\sqrt{2}}{10} \end{split}\] Teraz wyliczymy sinus korzystając z wyznaczonego wcześniej wzoru: \[\sin \alpha =7\cos \alpha =7\cdot \frac{\sqrt{2}}{10}=\frac{7\sqrt{2}}{10}\]

tablica trygonometryczna sin cos tg ctg